近日,The Plant Journal在线发表了彭新湘研究员团队完成的题为“Wounding induces a peroxisomal H2O2 decrease via glycolate oxidase-catalase switch dependent on glutamate receptor-like channel-supported Ca2+ signaling in plants”的研究论文(论文连接https://doi.org/10.1111/tpj.16427)。
传统观点认为,H2O2信号受到其产生与清除系统的协同调节,但对其产生机制及生理功能至今尚未完全清楚。C3植物中约70%的H2O2来源于光呼吸途径中乙醇酸氧化酶(GLO)的催化反应,团队的前期研究发现GLO与CAT(过氧化氢酶)存在互作且其互作/解离具有可逆性;在响应外部刺激时,GLO-CAT复合体可在不同状态间瞬时转换,进而通过改变二者间的物理距离调节CAT对H2O2的清除效率,最终诱发产生光呼吸H2O2信号波。这一物理开关的揭示增添了一种新的H2O2信号发生机制(图1)(Mol Plant,2016; Plant J,2022)。
图1 GLO-CAT分子开关调控H2O2信号波动产生 (Plant J, 2022)
本研究进一步表明此开关调控的光呼吸H2O2信号波在Ca2+信号的介导下与质外体来源的H2O2信号发生反向时空互作,参与植物机械损伤的快速系统响应(图2)。为应对各种环境胁迫,植物在长期进化过程中形成了较完善的系统防御/适应机制;植物局部组织对于环境胁迫的感知,如机械损伤,可迅速激活植物的系统信号转导机制,进而调节自身的生理状态和形态特征以更好地适应环境。Ca2+和H2O2作为重要的系统信号分子,在植物的系统防御/适应调节中处于核心地位,但二者交流对话的分子机制尚未完全了解。本研究采用药理、生化和遗传学等方法证明局部机械损伤可快速诱导系统叶片中GLO-CAT互作加强,从而导致光呼吸H2O2含量快速下降,同时与质外体H2O2含量升高形成反向时空互作。进一步证明了这种不同细胞区室的H2O2反向同步变化是由谷氨酸盐受体依赖的Ca2+波所介导。机理方面,当过氧化物酶体中的Ca2+含量升高后,以直接或间接方式对GLO-CAT互作及H2O2产生原位调节作用。该研究展示了一种新的H2O2系统信号时空及稳态调节机制,并为光呼吸H2O2信号在植物环境防御/适应中的功能提供新认知。
图2虚线左侧,GLR介导GC-H2O2含量下降;虚线右侧,GLR介导NADPH氧化酶来源的H2O2含量升高(Plant J, 2023)
学院博士后李向阳和硕士研究生陈琳茹为论文的共同第一作者,张智胜副研究员和彭新湘研究员为论文的共同通讯作者。以上研究得到国家重点研发计划(2020YFA0907600)、国家自然科学基金青年项目(32200205)、广东省基础与应用基础研究重大项目(2019B030302006)以及中国博士后科学基金(2022M711206)的资助。